

8 Environmental Microbiology | Research Article

Suggested role of NosZ in preventing N_2O inhibition of dissimilatory nitrite reduction to ammonium

Sojung Yoon,¹ Hokwan Heo,¹ Heejoo Han,¹ Dong-Uk Song,¹ Lars R. Bakken,² Åsa Frostegård,² Sukhwan Yoon¹

AUTHOR AFFILIATIONS See affiliation list on p. 12.

ABSTRACT Climate change and nutrient pollution are among the most urgent environmental issues. Enhancing the abundance and/or the activity of beneficial organisms is an attractive strategy to counteract these problems. Dissimilatory nitrate reduction to ammonium (DNRA), which theoretically improves nitrogen retention in soils, has been suggested as a microbial process that may be harnessed, especially since many DNRA-catalyzing organisms have been found to possess nosZ genes and the ability to respire N₂O. However, the selective advantage that may favor these nosZ-harboring DNRA-catalyzing organisms is not well understood. Here, the effect of N₂O on Nrf-mediated DNRA was examined in a soil isolate, Bacillus sp. DNRA2, possessing both nrfA and nosZ genes. The DNRA metabolism of this bacterium was observed in the presence of C₂H₂, a NosZ inhibitor, with or without N₂O, and the results were compared with C₂H₂-free controls. Cultures were also exposed to repeated oxic-anoxic transitions in the sustained presence of N₂O. The NO_2^- -to- NH_4^+ reduction following oxic-to-anoxic transition was significantly delayed in NosZ-inhibited C2H2-amended cultures, and the inhibition was more pronounced with repeated oxic-anoxic transitions. The possibility of C_2H_2 involvement was dismissed since the cultures continuously flushed with C_2H_2/N_2 mixed gas after initial oxic incubation did not exhibit a similar delay in DNRA progression as that observed in the culture flushed with N2O-containing gas. The findings suggest a possibility that the oft-observed nosZ presence in DNRA-catalyzing microorganisms secures an early transcription of their DNRA genes by scavenging N₂O, thus enhancing their capacity to compete with denitrifiers at oxic-anoxic interfaces.

IMPORTANCE Dissimilatory nitrate/nitrite reduction to ammonium (DNRA) is a microbial energy-conserving process that reduces NO_3^- and/or NO_2^- to NH_4^+ . Interestingly, DNRA-catalyzing microorganisms possessing *nrfA* genes are occasionally found harboring *nosZ* genes encoding nitrous oxide reductases, i.e., the only group of enzymes capable of removing the potent greenhouse gas N₂O. Here, through a series of physiological experiments examining DNRA metabolism in one of such microorganisms, *Bacillus* sp. DNRA2, we have discovered that N₂O may delay the transition to DNRA upon an oxic-to-anoxic transition, unless timely removed by the nitrous oxide reductases. These observations suggest a novel explanation as to why some *nrfA*-possessing microorganisms have retained *nosZ* genes: to remove N₂O that may otherwise interfere with the transition from O₂ respiration to DNRA.

KEYWORDS nitrous oxide reduction, dissimilatory nitrite reduction to ammonium, oxic-anoxic transition, *Bacillus*, transcriptional regulation

D issimilatory nitrate/nitrite reduction to ammonium (DNRA) is the respiratory reduction of NO_3^- and/or NO_2^- to NH_4^+ (1–3). All DNRA-catalyzing isolates examined thus far utilize organic compounds as the source of electrons, although recent culture-independent observations suggest the existence of lithotrophic DNRA in the

Invited Editor Lisa Y. Stein, University of Alberta, Edmonton, Alberta, Canada

Editor Nicole Dubilier, Max Planck Institute for Marine Microbiology, Bremen, Germany

Address correspondence to Sukhwan Yoon, syoon80@kaist.ac.kr.

The authors declare no conflict of interest.

See the funding table on p. 12.

Received 23 June 2023 Accepted 31 July 2023 Published 22 September 2023

Copyright © 2023 Yoon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

environment (4, 5). As DNRA and denitrification essentially share the same electron donors and acceptors and are both anaerobic reactions activated in response to O_2 depletion, the two respiratory NO_3^-/NO_2^- pathways compete in the environment (2, 6, 7). This competition is often viewed in the context of the relative availability of organic carbon and NO_3^- / NO_2^- ; as DNRA theoretically yields larger amount of energy per molecule of NO3⁻ reduced, it has been hypothesized that DNRA would be competitive in reduced environments, often characterized by high C:N ratios (8-12). This redox- or C:N-ratio-controlled competition between denitrification and DNRA was demonstrated in several pure culture studies of organisms harboring both denitrification and DNRA pathways, e.g., Shewanella loihica PV-4, as well as in laboratory studies of complex microbial communities (5, 8, 13–15). However, environments where DNRA outcompetes denitrification, thus contributing substantially to the fate of NO₃⁻, are rarely found, apart from highly reduced and/or sulfide-rich marine sediments (5, 16). If artificial stimulation of DNRA activity may be possible, either via biostimulation or bioaugmentation approaches, DNRA would have various environmental applications. Outcompeting denitrification with DNRA has been proposed as a means to improve nitrogen management of agricultural soils, as DNRA activation would reduce the amounts of nitrogen lost via denitrification and leaching (2, 17, 18). In the wastewater sector, DNRA has been suggested as a complement to the anammox process, as DNRA can reverse excessive nitrification and reduce undesired NO₃⁻ back to NO₂⁻ and NH₄⁺ (19, 20). Such attractive potential applications warrant further investigation into the DNRA ecophysiology.

Previously, production of NH_4^+ from reduction of NO_3^- and NO_2^- has been verified for multiple soil isolates carrying either *nrfA* or *nirB* (3). While NirB has an assimilatory function in many organisms and thus is not exclusive to DNRA, the physiological function of the cytochrome c_{552} nitrite reductase encoded by *nrfA* is limited to the respiratory role in DNRA (3, 21, 22). Further, the NO_2^- -to- NH_4^+ turnover in the microorganisms possessing *nirB* but no *nrfA* invariably required a fermentable organic substrate as the source of electrons, suggesting that NO_2^- may be used for NADH regeneration, rather than being the terminal electron acceptor for energy conservation (3, 23). For these reasons, the signature functional gene representing the DNRA pathway has long been the *nrfA* gene, and NirB-mediated NO_2^- -to- NH_4^+ reduction is probably not a respiratory reaction, despite the NH_4^+ release observed with *nirB*-possessing microorganisms lacking *nrfA* (24, 25).

One of the unresolved conundrums surrounding the nrfA gene is its widespread co-presence with the *nosZ* gene, i.e., the gene encoding the nitrous oxide reductase, in bacterial genomes (3, 26–28). Further, several nrfA-possessing and DNRA-catalyzing microorganisms carrying nosZ, e.g., Wolinella succinogenes, Anaeromyxobacter dehalogenans, and Bacillus vireti, were able to reduce N₂O to N₂ (26, 27, 29). These microorganisms lack nirS and nirK and thus do not reduce NO2⁻ via canonical denitrification, traditionally defined as respiratory reduction of NO_2^- where >80% of the NO_2^- is converted to N_2O and N₂ via NO (30). Release of N₂O from NrfA-mediated DNRA was demonstrated with the four nrfA-possessing soil isolates examined earlier (3). All four strains released 0.4-3.0% of reduced NO₃⁻ as N₂O, and Bacillus strain DNRA2, the only one of these that possessed nosZ, presumably consumed the N₂O that it produced, as N₂O accumulation was observed in the presence of NosZ inhibitor C_2H_2 , but not in its absence (31). Energy conservation via N₂O reduction was implied in the observed cell growth in the W. succinogens (the nos Z^+ variant), A. dehalogenans, and B. vireti cultures fed N₂O as the sole electron acceptor together with a non-fermentable electron donor (27, 32, 33). Apparent from these observations, N₂O-reducing capability would benefit the DNRA-catalyzing organisms by enabling them to utilize the fugitive N_2O from DNRA, as well as N₂O released from other organisms in their habitat (27, 34, 35). Perhaps, as the nosZ genes these organisms harbor mostly belong to the clade II, which, in general, tend to exhibit higher affinities to N_2O , the possession of *nosZ* and the capability to capitalize on sub-micromolar N₂O may even be crucial for their survival in environmental niches unfavorable for DNRA in competing with denitrifiers (27, 34).

Here, using *Bacillus* sp. DNRA2 as a model organism, we focused on elucidating the ecophysiological benefits of being able to reduce N₂O, apart from utilization of N₂O for energy conservation. A series of physiological experiments were performed with *Bacillus* sp. DNRA2 growing in batch cultures, with frequent monitoring of nitrogenous gases, NO₃⁻, NO₂⁻, and NH₄⁺ concentrations before, during, and after an oxic-to-anoxic transition. In particular, the effect of N₂O on its DNRA activity was examined. The results suggested an inhibitory effect of N₂O on DNRA activity following an oxic-anoxic transition, which was further examined by reverse-transcription qPCR targeting *nrfA* transcripts of cultures exposed to repeated oxic-anoxic spells. This study provides a previously unrecognized evolutionary explanation for possession of *nosZ* by DNRA-catalyzing microorganisms and discusses its implications for denitrification-vs-DNRA competition.

RESULTS

Effect of N₂O on DNRA in Bacillus sp. DNRA2 batch cultures

The batch experiments performed with *Bacillus* sp. DNRA2 with the four different gas amendments (N₂ only, N₂O/N₂, C₂H₂/N₂, or N₂O/C₂H₂/N₂; see Materials and Methods for details) showed that the onset of NO₂⁻-to-NH₄⁺ reduction following O₂ consumption was delayed by the presence of N₂O (Fig. 1). The dissolved O₂ concentration decreased below

FIG 1 Incubation of 100 mL (prepared in 160 mL serum vials with the headspace consisting of 95% N₂ and 5% O₂) *Bacillus* sp. DNRA2 cultures with 1.0 mM NO₂⁻. The following incubation conditions were examined: (A) control without any headspace amendment, (B) N₂O-amended condition with 3.5 µmol N₂O initially added to the culture vials, (C) C₂H₂-amended condition with 10% of the headspace replaced with C₂H₂, and (D) N₂O-and-C₂H₂-amended condition. The data points represent the average of triplicate cultures and the error bars are the standard deviations of the values obtained from triplicate cultures (\blacksquare , NO₂⁻; ●, NH₄⁺; \checkmark , N₂O-N; shaded curve, dissolved oxygen).

the detection limit (0.07 mg L⁻¹) within 25 h. The NH₄⁺ concentration decreased to $<5 \mu$ M by 20 h in all cultures, presumably due to assimilation, as the cell concentration increased to an OD₆₀₀ value of 0.030 \pm 0.002 after O₂ depletion (the OD₆₀₀ data are not shown, as no significant growth occurred after O₂ depletion). In the controls, 0.86 \pm 0.05 mM NH₄⁺ was produced from reduction of 0.98 \pm 0.02 mM NO2 $^-$ within 60 h of O2 depletion (Fig. 1A). In the cultures amended with N_2O but not C_2H_2 , N_2O was completely consumed within 10 h after O₂ depletion, before any significant consumption of NO₂⁻ or production of NH₄⁺ occurred (Fig. 1B). When the experiment was terminated at 73 h, 1.00 ± 0.01 mM NO_2^- was reduced to 0.91 \pm 0.03 mM NH_4^+ , indicating that DNRA was marginally affected by the initial presence of N_2O . The inclusion of C_2H_2 to the headspace resulted in substantial delays in NO_2^- consumption and NH_4^+ production. In the cultures with the headspace initially containing C_2H_2 but no N_2O , N_2O production began at 29.5 h, and the amount of N₂O-N eventually reached 3.57 \pm 0.29 µmol N₂O-N vial⁻¹ at 73 h, accounting for 12.0 \pm 1.9% of NO₂⁻ that had been consumed up to this point (Fig. 1C). Reduction of NO2⁻ to NH4⁺ was significantly delayed under this incubation condition, and only 3.6 \pm 0.3 $\mu mol~NH_4^+$ vial^{-1} was detected at 73 h. In the cultures to which N_2O was added along with C_2H_2 , NO_2^{-} -to- NH_4^{+} reduction was further inhibited (Fig. 1C). The amount of N_2O increased from 6.6 \pm 0.3 to 10.1 \pm 0.2 μ mol N_2O -N vial⁻¹ (16.5 \pm 2.2% of consumed NO_2^{-}). Interestingly, the anoxic cultures incubated with C_2H_2 and N_2O did not show any noticeable difference from the controls, suggesting that DNRA inhibition occurred only during the oxic-anoxic transitions (Fig. S1).

FIG 2 Incubation of 100 mL (prepared in 160 mL serum vials with the headspace consisting of 95% N₂ and 5% O₂) *Bacillus* sp. DNRA2 cultures with 1.0 mM NO₃⁻. The following incubation conditions were examined: (A) control without any headspace amendment, (B) N₂O-amended condition with 3.5 µmol N₂O initially added to the culture vials, (C) C₂H₂-amended condition with 10% of the headspace replaced with C₂H₂, and (D) N₂O-and-C₂H₂-amended condition. The data points represent the average of triplicate cultures and the error bars are the standard deviations of the values obtained from triplicate cultures. (\blacklozenge , NO₃⁻; \blacksquare , NO₂⁻; \blacklozenge , NH₄⁺; \checkmark , N₂O-N; shaded curve, dissolved oxygen).

Similar trends were observed when NO₃⁻ replaced NO₂⁻ as the electron acceptor (Fig. 2). Without C₂H₂ amendment, neither NO₃⁻-to-NO₂⁻ nor NO₂⁻-to-NH₄⁺ reduction was noticeably affected by the initial presence of N₂O, although N₂O consumption preceded NO₃⁻ reduction as the culture turned anoxic (Fig. 2A and B). In the cultures amended with C₂H₂, NO₂⁻-to-NH₄⁺ reduction that followed NO₃⁻-to-NO₂⁻ reduction was substantially slower (Fig. 2C and D). In the cultures amended with C₂H₂ but no N₂O, only 40.4 ± 12.2 of 85.0 ± 11.9 µmol NO₂⁻ produced from NO₃⁻ reduction was further reduced to NH₄⁺ by the end of incubation, yielding 5.72 ± 0.58 µmol N₂O-N. The C₂H₂- and N₂O-amended cultures showed similarly slower NH₄⁺ production. Only 37.2 ± 0.2 µmol NH₄⁺ was produced after 79 h, while the amount of N₂O increased from 6.1 ± 0.3 to 10.4 ± 0.8 µmol N₂O-N vial⁻¹.

Confirmation of absence of direct C₂H₂ influence on DNRA

The possibility of C₂H₂ having contributed to the observed delays in DNRA activation following the oxic-to-anoxic transition was examined in batch reactors fed continuous gas flowthroughs (Fig. 3). In all three reactors, the initial incubation with 3:1 N₂/air mixed gas increased the cell density to $OD_{600} \sim 0.06$. Production of NH₄⁺ in the reactors began after the gas source was switched to N₂, N₂/C₂H₂ mixture (9:1), or N₂/C₂H₂ mixture (13:5:2). The NH₄⁺ production curves of cultures fed with N₂ were almost identical to those of cultures fed with an N₂/C₂H₂ mixture, while the reactor fed with an N₂/C₂H₂/N₂O mixture showed substantially slower NO₂⁻⁻to-NH₄⁺ reduction, corroborating the negative impact of N₂O on DNRA activation. These experiments were repeated with a new set of cultures, reproducing virtually indistinguishable NH₄⁺ production curves (Fig. S2). These observations substantiated that the inhibition of NO₂⁻⁻to-NH₄⁺ reduction observed in the C₂H₂-amended batch cultures was most likely due to an inhibitory effect of N₂O, but not C₂H₂.

N₂ and NO production during DNRA

Incubation with the closed-circuit robotized incubation system enabled the monitoring of NO and N₂ concentrations in the *Bacillus* sp. DNRA2 cultures amended with and without C₂H₂ and N₂O, showing distinct difference between the two treatments (Fig. 4). The OD₆₀₀ values measured after O₂ depletion were 0.11 \pm 0.01 and 0.091 \pm 0.015 in the

FIG 3 Production of NH_4^+ from 2 mM NO_2^- in a batch reactor containing 500 mL *Bacillus* sp. DNRA2 culture fed with continuous stream of >99.999% N_2 gas (\bigcirc), 9:1 N_2/C_2H_2 mixed gas (\blacktriangle), or 9:1 N_2/C_2H_2 mixed gas containing 0.1% N_2O (\diamondsuit), after 30 h of aerobic incubation with 95% N_2 and 5% O_2 . Dissolved oxygen concentration is presented as a shaded curve. The results from the replicate set of experiments are presented in Fig. S2.

FIG 4 Respiratory kinetics of *Bacillus* sp. DNRA2 batch cultures were monitored using a robotized incubation system. About 50-mL cultures amended with 1.0 mM NO₂⁻ was incubated in sealed 120 mL glass vials under vigorous stirring. All vials were started with 7% O₂ in the headspace. (A) Controls without additional amendments; (B) cultures amended with 6 μ mol N₂O and 10% (vol/vol) C₂H₂. The data points represent the average of triplicate cultures and the error bars represent their standard deviations (\blacksquare , NO₂⁻; \blacksquare , NH₄⁺; \forall , N₂O-N; \bigcirc , N₂-N; \square , NO; shaded curve, dissolved oxygen).

controls and C₂H₂-and-N₂O-amended cultures, respectively. The inhibitory effect of C₂H₂ and N₂O on NO₂⁻-to-NH₄⁺ reduction was clearly reproducible. The production of 5.8 ± 1.0 µmol N₂ (10.7 ± 1.3% of reduced NO₂⁻) in the controls verified that N₂O production and consumption occurred simultaneously as NO₂⁻ was being reduced to NH₄⁺. The N₂O yield, in terms of percent of reduced NO₂⁻, was significantly higher for the cultures amended with C₂H₂ and N₂O, as 17.2 ± 1.8% of reduced NO₂⁻ was recovered as N₂O. Notably, NO accumulated to a substantially higher level in the C₂H₂-and-N₂O-amended cultures than in the controls. While the amount of NO remained below 0.6 nmol vial⁻¹ in the controls as NO₂⁻ was reduced to NH₄⁺ (44.6–80.6 h), NO accumulated to 2.6 ± 0.8 nmol vial⁻¹ from the background level (~0.5 nmol vial⁻¹) in the C₂H₂-and-N₂O-amended cultures between 91.7 and 113.6 h. Evidently, the presence of N₂O or C₂H₂ affected NO production and release in the *Bacillus* strain DNRA2 cultures undergoing DNRA.

Sustained DNRA inhibition in Nos-inhibited *Bacillus* sp. DNRA2 batch cultures subjected to oxic-anoxic alternations

Alternation of oxic and anoxic conditions via periodic replacement of the headspace gas resulted in a more pronounced N₂O impact on DNRA in Bacillus sp. DNRA2 cultures (Fig. 5). In the control, i.e., the batch culture without N_2O and C_2H_2 , the vials contained 80.7 \pm 5.0 µmol NH₄⁺ after 80 h of incubation with 104.0 \pm 1.9 µmol NO₂⁻ and 12.1 \pm 1.2 μ mol NH₄⁺ as the initial N input. Replacement of the headspace with the oxic gas at 49.5 h immediately halted NO₂⁻ turnover, which was then recovered after O₂ depletion. The N₂O concentration was sustained below the detection limit throughout the incubation, suggesting that produced N₂O was immediately consumed via NosZ-catalyzed reduction. Each headspace replacement (at 43 and 80 h) resulted in an immediate decrease in NH4⁺ concentration, presumably due to assimilation. In the culture vials to which C_2H_2 and N_2O had been added, NO_2^- concentration decreased by only 17.9 ± 3.0 μ mol vial⁻¹, while the amount of NH₄⁺ did not increase above 17 μ mol vial⁻¹ at any point during incubation, clearly showing that NO_2^{-} -to- NH_4^+ reduction was inhibited to a larger extent with the intermittent headspace replenishment. As the cultures were replenished with a gas containing a high concentration of background N₂O, no significant increase in the amount of N₂O could be observed. In all treatments, significant growth occurred only during the initial oxic incubation and immediately following the first headspace replenishment (Fig. S3).

FIG 5 Incubation of *Bacillus* sp. DNRA2 cultures with headspace replenishments to simulate repeated oxic-to-anoxic transitions. The cultures initially contained 1.0 mM NO₂⁻. The headspace consisted of (A) 3:1 N₂/air mixed gas or (B) 13:5:2 N₂/air/C₂H₂ mixed gas amended with 3.5 µmol N₂O (before equilibration) and was replaced with gas with the same composition at 52.5 and 70 h. The transcript copy numbers of *nrfA* (red squares) and *nosZ* (Δ) normalized with the copy numbers of *recA* transcripts under condition A (C) and condition B (D) were monitored with RT-qPCR. The average values obtained from biological triplicates are presented, and the error bars represent their standard deviations (black squares, NO₂⁻; \bullet , NH₄⁺; \checkmark , N₂O-N; shaded curve, dissolved oxygen).

The effect of N₂O on *nrfA* and *nosZ* transcription

Reverse transcription-quantitative PCR (RT-gPCR) analyses, performed with select samples from the above experiments with repeated oxic-to-anoxic transitions, showed that 15 μM dissolved N₂O was sufficient to significantly alter *nrfA* transcription in *Bacillus* strain DNRA2 (Fig. 5). With the sole exception of 75 h when NO2⁻ had been depleted in the control cultures, nrfA transcription was significantly lower for the N2O-and-C2H2amended cultures than the control cultures (two-sample t test; P < 0.05). The fold differences between the treatments were substantial, ranging between 1.6 and 5.3. Also notable and common to both sets of cultures was that the *nrfA* transcription levels measured when O₂ was present were significantly lower than those measured during the ensuing anoxia (paired t -test; P < 0.05). For example, the nrfA transcription levels measured at 51 h (oxic) for the N₂O-and-C₂H₂-amended cultures and the controls (3.2 \pm 2.6×10^{-3} and $1.7 \pm 0.2 \times 10^{-2}$ nrfA/recA, respectively), were both significantly lower (P < 0.05) than those measured at 62 h (anoxic; $6.3 \pm 2.2 \times 10^{-2}$ and $3.1 \pm 1.0 \times 10^{-2}$ nrfA/recA, respectively). These RT-qPCR results clearly showed that the presence of N₂O affected nrfA transcription in Bacillus sp. DNRA2, explaining, at least partially, the inhibition of DNRA activity observed in the N₂O-and-C₂H₂-amended cultures.

mBio

The *nosZ* transcription levels were not significantly different between the control cultures and the N₂O-and-C₂H₂-amended cultures until 51 h (P > 0.05), but were an order of magnitude higher in the N₂O-and-C₂H₂-amended cultures beyond that time point (P < 0.05; Fig. 5B and D). Apparently, the presence of N₂O, i.e., the substrate of NosZ, and C₂H₂, i.e., a NosZ inhibitor, had no significant effect (P > 0.05) on *nosZ* transcription. The substantially decreased *nosZ* transcription levels observed toward the end of incubation in the control cultures (62 and 75 h), but not in the N₂O-and-C₂H₂-amended cultures, were probably due to depletion of the nitrogenous electron acceptors. Also notable from the RT-qPCR results was that transcription of *nosZ* was at least an order of magnitude higher than that of *nrfA* in both sets, while not being as sensitive to exposure to O₂ as that of *nrfA*.

DISCUSSION

Release of N₂O from NO₂⁻to-NH₄⁺ reduction has been widely observed in DNRA-catalyzing microorganisms, presumably due to the leakage of the probable intermediate NO and subsequent reduction by NO reductases (3, 26, 36–39). While most of these studies have reported N₂O yields (i.e., mole N₂O-N released per mole NO₃⁻ or NO₂⁻ consumed) below 5%, the yields varied substantially even among phylogenetically close microorganisms (3, 37). Further, the experiments with *B. vireti* showed that N₂O yields may vary depending on growth conditions and also that N₂O yields may be substantially larger (e.g., >10%) under certain incubation conditions, e.g., high NO₃⁻ concentration (26, 33). For long, DNRA has been perceived as a pathway that yields less N₂O than denitrification, and the DNRA-catalyzing microorganisms harboring *nosZ* have drawn particular interest as potential net consumers of environmental N₂O (2, 27, 28). However, knowing that substantial amounts of N₂O can be produced from DNRA, the widespread possession of *nosZ* by DNRA-catalyzing microorganisms may need explanations further than that merely pertaining to their N₂O-scavenging capability.

In Bacillus sp. DNRA2, the presence of N2O clearly delayed NrfA-mediated NO2⁻-to-NH4⁺ reduction as the culture was transitioning from aerobic to anaerobic respiration (Fig. 5C and D). The downregulated nrfA transcription in the presence of N₂O explained this delayed the onset of DNRA; however, the mechanism via which N₂O affects nrfA transcription remains unelucidated and can only be hypothesized based on the limited observations. Transcription of nrfA has been observed only in a surprisingly limited number of DNRA-catalyzing microorganisms, including Escherichia coli K-12, W. succinogens (the nosZ⁺ variant), S. loihica PV-4, B. vireti, and Citrobacter sp. DNRA3 (3, 8, 13, 33, 40–43). Downregulation of nrfA transcription and DNRA activity in the presence of O₂ and NO₃⁻ has been repeatedly observed (3, 33, 40, 43). In S. loihica PV-4, harboring both denitrification (with NirK catalyzing NO2⁻-to-NO reduction) and DNRA pathways, nrfA transcription was significantly affected by the electron donor- or acceptor-limitation, pH, and NO₂^{-/NO₃⁻ ratios (8, 13, 42). The only study that reported N₂O regulation of} *nrfA* transcription was that performed with W. succinogens $nosZ^+$ variant, where the presence of N₂O increased transcription of nrfA, along with those of napA and nosZ (41). Nonetheless, none of these fits into the context of the current observation.

Previous studies have repeatedly suggested the role of NO in transcription-level regulations of nitrogen cycling reactions (44–46). NO concentrations above the baseline level were observed in the N₂O-and-C₂H₂-amended culture only after the onset of DNRA; however, the departure from the control culture was evident, in that NO steadily increased with the progression of DNRA (Fig. 3). How N₂O may alter production or consumption and detoxification (presumably by NorB and HmpA, respectively) of NO remains enigmatic; however, this elevated NO level is notable as the only suggestion of N₂O impact on DNRA not directly relevant to transcriptional regulation of *nrfA*. The possibility that NO is involved in N₂O-mediated downregulation of *nrfA* transcription should not be neglected, as NO, even at nanomolar concentrations, may act as a signal initiating transcription of denitrification genes (e.g., *nirS, norB,* and *nosZ*) (45–48). A time-series transcriptomic analysis of *Bacillus* sp. DNRA2 cultures during and after

transition from aerobic respiration to DNRA would be an interesting follow-up study, in that it may be able to disclose the genes under influence of the N₂O presence, e.g., transcription regulators, electron transport chain enzymes, and/or even those related to vitamin B₁₂ synthesis, that may help elucidate mechanistic features of the N₂O-elicited gene regulation, including possible NO involvement in the regulatory cascade (49, 50).

In DNRA-catalyzing bacteria possessing *nosZ*, N₂O reduction is often observed to occur simultaneously with DNRA (3, 29). The results from previous experiments with *W. succinogens* (the *nosZ*⁺ variants) and *Bacillus* strain DNRA2, which comparatively examined N₂O evolution in the cultures with and without the N₂O reduction inhibitor C₂H₂, implied that NosZ-mediated N₂O reduction occurs simultaneously with DNRA in these strains (3, 29). Further, in-line N₂ monitoring verified production of N₂ from N₂O reduction during anoxic incubation of *B. vireti* and *Bacillus* sp. DNRA2, as these microorganisms reduced NO₃⁻/NO₂⁻ to NH₄⁺ (26). Utilization of fugitive N₂O from DNRA as an additional source of electron acceptors would not provide much of an energetic benefit to these organisms. Assuming a 5% N₂O yield, the additional electron-accepting capacity gained from reduction of the produced N₂O to N₂ via NosZ activity would be merely 0.22% of that gained from the dissimilatory reduction of NO₂⁻ to NH₄⁺ (see Supplemental Material).

The current study posits a novel hypothesis that nosZ-possessing DNRA-catalyzing microorganisms such as Bacillus sp. DNRA2 may have retained nosZ genes, possibly acquired via horizontal gene transfers, as NosZ serves to remove N2O, which would otherwise hamper the activation of DNRA in response to O_2 -depletion (28). As NO_3^- in the environment is mostly produced from aerobic oxidation of NH₄⁺, the largest anoxic pools of NO_3^- (and also NO_2^- despite at much lower concentrations) and the most vigorous NO_3^- and NO_2^- reduction activities in soils and sediments are often associated with oxic-anoxic interfaces where O₂ concentrations fluctuate, and it is likely that micro-niches in such habitats act as hotspots for N₂O accumulation from nitrification, denitrification, and/or DNRA (51-54). Any substantial delay in the transition to anaerobic respiration would be detrimental for DNRA-catalyzing microorganisms in their competition with denitrifiers (6, 8). Hasty generalization should be avoided, as simultaneous occurrence of N₂O reduction and DNRA has so far been experimentally confirmed only in Bacillus sp. DNRA2, B. vireti, and W. succinogens, and experimental evidence of N2O interference with nrfA expression has not yet been reported for any microorganism apart from Bacillus sp. DNRA2. Examining whether the observed phenotype relating NosZ and NrfA functions can be further generalized would be an interesting follow-up study, which would help further understand the evolutionary implication of nosZ gene possession by DNRA-catalyzing microorganisms.

Bacillus sp. DNRA2, when incubated with N2O in the presence of C2H2 released 12-19% of consumed NO₂-N as N₂O-N (Fig. 1D, 2D and 3B). The only other reported case with >10% conversion of NO_3^{-}/NO_2^{-} to N_2O-N in a NrfA-mediated DNRA reaction was that of *B. vireti*, which released up to 49% of reduced NO_3^- as N_2O-N when amended with 20 mM NO_3^- (26). Under the experimental conditions that resulted in the high N₂O yields, Bacillus sp. DNRA2 and B. vireti both showed a lower nrfA transcription level and diminished NO_2^{-} -to- NH_4^{+} reduction rates following an oxic-to-anoxic transition (33). The NrfA enzymes of the two Bacillus strains share a high level of amino acid sequence similarity (73% identity), suggesting a high degree of protein structure similarity. This similarity is notable, as the nitrogen dissimilation gene inventories in the two strains are substantially different. That is, Bacillus strain DNRA2 possesses nap for NO3⁻ reduction and norB for NO reduction, while B. vireti possesses nar and cba encoding the menaquinol/cytochrome c-dependent qCuNor instead of nap and norB, respectively (3, 26). Possibly, the high yields of N₂O (or of NO, which may have been immediately reduced by nitric oxide reductases or NO detoxification enzymes) may be due to an inherent structural feature of this particular clade of NrfA. Such high N₂O yield and N₂O sensitivity of DNRA may be the rationale for the genomic observations that many of the Bacillus spp. harboring a *nrfA* gene in their genomes possess a *nosZ* gene (Table S1), although

verification of this rather bold hypothesis would require further experimental evidences and mechanistic explanations (55).

The N₂O effects on DNRA, as observed in *Bacillus* sp. DNRA2, may have substantial implications to the fate of nitrogen in the environment. Whether N₂O-induced delay in nrfA transcription and reduced DNRA activity is widely spread among DNRA-catalyzing organisms remains to be investigated, and this phenotype may possibly be limited to Bacillus spp. and their close relatives. Even so, Bacillus spp. are often an abundant group of microorganisms in agricultural soils, where the fate of NO_3^- has environmental and ecological consequences (56, 57). As DNRA-catalyzing microorganisms compete with denitrifiers for the common electron acceptors, i.e., NO3⁻ and NO2⁻, any delays in NrfA activation or reduced NrfA activity would result in silencing of the DNRA phenotype (3, 6, 8). In NO₃-rich microenvironments near oxic-anoxic interfaces in soils, DNRA-catalyzing microorganisms with similar physiology as Bacillus sp. DNRA2 would have limited DNRA activities, if local NosZ activity lags behind production or influx of N₂O. Probably, DNRA-catalyzing *Bacillus* spp. may have retained the *nosZ* genes to increase the chance of competing against denitrifiers in such microenvironments. Supporting that NosZ was playing a crucial role in facilitating DNRA, Bacillus sp. DNRA2 was capable of keeping the N₂O level low and rapidly transitioning from aerobic respiration to NO₂⁻-to-NH₄⁺ reduction when incubated without the NosZ inhibitor C₂H₂. Going one step further, these NosZ-wielding DNRA-catalyzing microorganisms may be key to collective DNRA enhancement in soils, in that they may provide relief to N₂O inhibition on DNRA activities of the surrounding microorganisms lacking nosZ. Whether and to what extent such hypothetical enhancement to collective nitrogen retention may occur in the soil microbiomes warrant further investigation.

MATERIALS AND METHODS

Culture medium and growth condition

The medium contained, per L, 0.58 g NaCl, 0.41 g Na₂HPO₄, 0.29 g K₂HPO₄, 5.3 mg of NH₄Cl, 6.2 mg R2A powder (Kisanbio, Seoul, South Korea), and 1 mL 1,000× trace metal solution (58). The pH was adjusted to 7.0 with 5 M HCl. Unless otherwise mentioned, batch cultures were prepared with 100 mL medium in 160 mL serum vials. For preparation of anoxic cultures, the vials were flushed with >99.9999% N₂ gas (Deokyang Co., Ulsan, South Korea) for 15 min and sealed with butyl rubber stoppers and aluminum crimps. Filter-sterilized 200× vitamin stock was added to the medium after autoclaving (59). Sodium lactate was added to a concentration of 5 mM, and KNO₃ or NaNO₂ was added to a concentration of 1 mM unless otherwise mentioned. For preparation of suboxic cultures, a pre-determined volume of the N₂ headspace was withdrawn and the same volume of air was injected through a 0.2-µm syringe filter (Advantec Inc., Tokyo, Japan). The medium vials were inoculated with 1 mL of Bacillus sp. DNRA2 preculture grown to the early stationary phase (OD₆₀₀ ~0.03). The precultures for the suboxic cultures were grown with 5% vol/vol O2 in the headspace as the sole electron acceptor, and those for anoxic cultures were grown with 1 mM NO2⁻. All microbial cultures were incubated in the dark at 25°C with shaking at 150 rpm, unless otherwise mentioned.

Batch observation of NO_2^{-}/NO_3^{-} reduction following oxic-to-anoxic transition

The progressions of DNRA reaction and N₂O production and consumption were observed in batch cultures of *Bacillus* sp. DNRA2 incubated with NO₂⁻ or NO₃⁻ under four different headspace compositions, to examine the possibility that N₂O may interfere or compete with DNRA reaction (3). Four sets of suboxic cultures, initially with ~5% vol/vol O₂ in the headspace, were prepared: (i) without any amendment to the culturing condition described above; (ii) with >99.999% N₂O gas (Danil Syschem Co., Seoul, South Korea) added to a targeted initial aqueous concentration of 15 μ M; (iii) with 10% of

the N₂ headspace replaced with >99.99% C₂H₂ gas (Special Gas, Inc., Daejeon, South Korea) to inhibit NosZ-mediated N₂O consumption; and (iv) with both N₂O and C₂H₂ added to the aforementioned concentrations. Additionally, two sets (conditions 1 and 4) of experiments were performed with cultures incubated anoxically throughout. For measurement of the dissolved concentrations of NO₃⁻, NO₂⁻, and NH₄⁺, 1 mL of culture sample was withdrawn, and the supernatant was collected after centrifugation and stored at -20°C. The N₂O and O₂ concentrations were measured immediately before the aqueous-phase sampling. The cultures were monitored until NO₃⁻ and NO₂⁻ were depleted in the controls (condition 1).

An additional set of batch cultivation experiments was performed to simulate repeated transitions from oxic to anoxic condition and *vice versa* that frequently occur at oxic-anoxic interfaces in soils (53). The controls (condition 1) and the cultures amended with both N₂O and C₂H₂ (condition 4) were prepared and the batch incubation experiments were performed identically to the experiments described above but with replacement of the headspace two times during the course of incubation (52 and 70.5 h), each after ensuring the absence of O₂ in both cultures. Headspace replenishing was performed by flushing the culture vials with N₂ gas for 5 min and adding, after closure of the culture vials, O₂, N₂O, and C₂H₂ back to their initial concentrations. The culture samples for RT-PCR analyses were collected at 24, 32, 43, 51.5, 62, and 75 h. The *nrfA* and *nosZ* transcripts in *Bacillus* sp. DNRA2 cultures were quantified by RT-qPCR using a previously established protocol (see Supplemental Material for a detailed method) (8).

To isolate the effect of C_2H_2 on DNRA from that of N_2O , NO_2^{-} -to- NH_4^+ reduction by *Bacillus* sp. DNRA2 was observed in a fed-batch reactor continuously flushed with N_2 gas or 9:1 $N_2:C_2H_2$ mixed gas with or without 0.1% (vol/vol) N_2O (Fig. S4). A 1-L glass reactor vessel was prepared containing 490 mL medium amended with 2 mM NaNO₂, 10 mM lactate, and 0.2 mM NH₄Cl and inoculated with 10 mL of *Bacillus* sp. DNRA2 culture aerobically grown to $OD_{600} = 0.03$. The aqueous phase was stirred at 250 rpm using a magnetic bar. Initially, a synthetic gas consisting of ~95% N_2 and 5% O_2 was bubbled into the liquid phase of the reactor at 40 mL min⁻¹. After 30 h of incubation, the gas source was switched to N_2 gas or 9:1 mixture of N_2 and C_2H_2 gas with or without 0.1% N_2O . Dissolved NO_2^- and NH_4^+ concentrations were monitored until no further change was observed.

Analytical procedures

The gaseous concentration of N₂O was measured using an HP6890 series gas chromatograph equipped with an HP-PLOT/Q column and an electron capture detector (Agilent, Palo Alto, CA, USA). The injector, oven, and detector temperatures were set to 200°C, 85°C, and 250°C, respectively. The dissolved O₂ concentration was monitored using a FireStingO2 oxygen meter and fiber-optic oxygen sensor spots (Pyroscience GmbH, Aachen, Germany). The total amount of N₂O in a culture vial was calculated from the headspace concentration using the dimensionless Henry's constant of N₂O at 25°C, which was calculated to be 1.68 (60). Dissolved concentrations of NO₂⁻, NO₃⁻, and NH₄⁺ were determined colorimetrically as previously described (61, 62). Lactate concentrations were measured using high-performance liquid chromatograph (Shimadzu, Kyoto, Japan) equipped with an Aminex HPX-87H column (Bio-Rad Laboratories, Inc., Hercules, CA, USA) at the start and at the end of each incubation to confirm that the initially added amount of lactate was sufficient to deplete all added terminal electron acceptors (data presented in Table S2).

Monitoring of NO and N₂ dynamics during DNRA

Bacillus sp. DNRA2 cultures were incubated in a robotized incubation system with frequent monitoring of O_2 and relevant N-species, with particular interest in NO and N_2 , which were not monitored in the other experiments described in this study. The analyses were performed as previously described with minor modifications (26, 63). Briefly, aerobic pre-cultures, raised under vigorous stirring (600 rpm) using magnetic bars

were transferred to sealed 120 mL medical flasks containing 50 mL of the R2A medium described above, to an initial OD₆₀₀ of ~0.03. The medium was supplemented with 0.2 mM NH₄Cl and 1.0 mM NaNO₂. Prior to inoculation, the flasks had been made anoxic by repeated He-flushing after which 5 mL O₂ (7% in the headspace) was added with or without 0.15 mL N₂O (approx. 12 µmol N₂O-N) and 12 mL C₂H₂. The cultures were incubated at 25°C with vigorous stirring. Concentrations of the gaseous compounds were monitored automatically with a TRACE 1310 GC (Thermo Fisher Scientific, Waltham, MA, USA; O₂, CO₂, N₂O, and N₂) and a NOA 280i Sievers nitric oxide analyzer (Zysense, Weddington, NC, USA) connected to the incubation system. Aqueous samples for measurements of NO₂⁻ and NH₄⁺ concentrations and OD₆₀₀ were manually withdrawn. Concentrations of NO₂⁻ were measured as described previously (26). NH₄⁺ concentration and OD₆₀₀ were performed as described above.

Statistical analyses

All experiments, unless otherwise mentioned, were performed in triplicate. Two-sample *t* tests were used to determine the statistical significance of the pairwise comparisons between two different treatments and paired *t* test was used to determine the significance of temporal changes in the transcript copy numbers and the concentrations of the N-species. All statistical tests were performed using R software version 3.5.1 (RStudio Team 2018). The *P* values lower than the 0.05 threshold were considered significant.

ACKNOWLEDGMENTS

This work was financially supported by the National Research Foundation of Korea (NRF) (Grant no. 2020R1C1C1007970 and 2022R1A4A5031447) and also, in part, by the Research Council of Norway (Project no. 325770).

AUTHOR AFFILIATIONS

¹Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea ²Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway

AUTHOR ORCIDs

Sojung Yoon b http://orcid.org/0009-0004-4447-8118 Åsa Frostegård b http://orcid.org/0000-0002-4754-5994 Sukhwan Yoon b http://orcid.org/0000-0002-9933-7054

FUNDING

Funder	Grant(s)	Author(s)
National Research Foundation of Korea (NRF)	2020R1C1C1007970,	Sojung Yoon
	2022R1A4A5031447	Hokwan Heo
		Heejoo Han
		Dong-Uk Song
		Sukhwan Yoon
Norges Forskningsråd (Forskningsrådet)	325770	Lars R. Bakken
		Åsa Frostegård

ADDITIONAL FILES

The following material is available online.

Supplemental Material

Supplemental materials (mBio01540-23-S0001.pdf). Texts S1 and S2, Fig. S1 to S4, and Tables S1 to S3.

REFERENCES

- Zumft WG. 1997. Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616. https://doi.org/10.1128/mmbr.61.4. 533-616.1997
- Yoon S, Song B, Phillips RL, Chang J, Song MJ. 2019. Ecological and physiological implications of nitrogen oxide reduction pathways on greenhouse gas emissions in agroecosystems. FEMS Microbiol Ecol 95:fiz066. https://doi.org/10.1093/femsec/fiz066
- Heo H, Kwon M, Song B, Yoon S. 2020. Involvement of NO₃- in ecophysiological regulation of dissimilatory nitrate/nitrite reduction to ammonium (DNRA) is implied by physiological characterization of soil DNRA bacteria isolated via a colorimetric screening method. Appl Environ Microbiol 86:e01054-20. https://doi.org/10.1128/AEM.01054-20
- Delgado Vela J, Bristow LA, Marchant HK, Love NG, Dick GJ. 2021. Sulfide alters microbial functional potential in a methane and nitrogen cycling biofilm reactor. Environ Microbiol 23:1481–1495. https://doi.org/10. 1111/1462-2920.15352
- Murphy AE, Bulseco AN, Ackerman R, Vineis JH, Bowen JL. 2020. Sulphide addition favours respiratory ammonification (DNRA) over complete denitrification and alters the active microbial community in salt marsh sediments. Environ Microbiol 22:2124–2139. https://doi.org/ 10.1111/1462-2920.14969
- Pandey A, Suter H, He J-Z, Hu H-W, Chen D. 2018. Nitrogen addition decreases dissimilatory nitrate reduction to ammonium in rice paddies. Appl Environ Microbiol 84:e00870-18. https://doi.org/10.1128/AEM. 00870-18
- Sgouridis F, Heppell CM, Wharton G, Lansdown K, Trimmer M. 2011. Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in a temperate re-connected floodplain. Water Res 45:4909–4922. https:// /doi.org/10.1016/j.watres.2011.06.037
- Yoon S, Cruz-García C, Sanford R, Ritalahti KM, Löffler FE. 2015. Denitrification versus respiratory ammonification: environmental controls of two competing dissimilatory NO₃-/NO₂- reduction pathways in *Shewanella loihica* strain PV-4. ISME J 9:1093–1104. https://doi.org/10. 1038/ismej.2014.201
- Jia M, Winkler MKH, Volcke EIP. 2020. Elucidating the competition between heterotrophic denitrification and DNRA using the resourceratio theory. Environ Sci Technol 54:13953–13962. https://doi.org/10. 1021/acs.est.0c01776
- Tiedje JM, Sexstone AJ, Myrold DD, Robinson JA. 1982. Denitrification: ecological niches, competition and survival. Antonie Van Leeuwenhoek 48:569–583. https://doi.org/10.1007/BF00399542
- Fazzolari É, Nicolardot B, Germon JC. 1998. Simultaneous effects of increasing levels of glucose and oxygen partial pressures on denitrification and dissimilatory nitrate reduction to ammonium in repacked soil cores. Eur J Soil Biol 34:47–52. https://doi.org/10.1016/S1164-5563(99)80006-5
- van den Berg EM, van Dongen U, Abbas B, van Loosdrecht MC. 2015. Enrichment of DNRA bacteria in a continuous culture. ISME J 9:2153– 2161. https://doi.org/10.1038/ismej.2015.195
- Yoon S, Sanford RA, Löffler FE. 2015. Nitrite control over dissimilatory nitrate/nitrite reduction pathways in *Shewanella loihica* strain PV-4. Appl Environ Microbiol 81:3510–3517. https://doi.org/10.1128/AEM.00688-15
- Vuono DC, Read RW, Hemp J, Sullivan BW, Arnone JA, Neveux I, Blank RR, Loney E, Miceli D, Winkler M-KH, Chakraborty R, Stahl DA, Grzymski JJ. 2019. Resource concentration modulates the fate of dissimilated nitrogen in a dual-pathway actinobacterium. Front Microbiol 10:3. https: //doi.org/10.3389/fmicb.2019.00003
- van den Berg EM, Boleij M, Kuenen JG, Kleerebezem R, van Loosdrecht MCM. 2016. DNRA and denitrification coexist over a broad range of acetate/N-NO₃- ratios, in a chemostat enrichment culture. Front Microbiol 7:1842–1853. https://doi.org/10.3389/fmicb.2016.01842
- Bernard RJ, Mortazavi B, Kleinhuizen AA. 2015. Dissimilatory nitrate reduction to ammonium (DNRA) seasonally dominates NO₃- reduction

pathways in an anthropogenically impacted sub-tropical coastal lagoon. Biogeochemistry 125:47–64. https://doi.org/10.1007/s10533-015-0111-6

- Rütting T, Boeckx P, Müller C, Klemedtsson L. 2011. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8:1779–1791. https://doi.org/ 10.5194/bg-8-1779-2011
- Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. 2013. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc Lond B Biol Sci 368:20130122. https://doi.org/10.1098/rstb.2013.0122
- Castro-Barros CM, Jia M, van Loosdrecht MCM, Volcke EIP, Winkler MKH. 2017. Evaluating the potential for dissimilatory nitrate reduction by anammox bacteria for municipal wastewater treatment. Bioresour Technol 233:363–372. https://doi.org/10.1016/j.biortech.2017.02.063
- Zhuang J-L, Sun X, Zhao W-Q, Zhang X, Zhou J-J, Ni B-J, Liu Y-D, Shapleigh JP, Li W. 2022. The anammox coupled partial-denitrification process in an integrated granular sludge and fixed-biofilm reactor developed for mainstream wastewater treatment: performance and community structure. Water Res 210:117964. https://doi.org/10.1016/j. watres.2021.117964
- Malm S, Tiffert Y, Micklinghoff J, Schultze S, Joost I, Weber I, Horst S, Ackermann B, Schmidt M, Wohlleben W, Ehlers S, Geffers R, Reuther J, Bange F-C. 2009. The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of *Mycobacterium tuberculosis*. Microbiology 155:1332–1339. https://doi. org/10.1099/mic.0.023275-0
- Ruiz B, Le Scornet A, Sauviac L, Rémy A, Bruand C, Meilhoc E. 2019. The nitrate assimilatory pathway in *Sinorhizobium meliloti*: contribution to NO production. Front Microbiol 10:1526. https://doi.org/10.3389/fmicb. 2019.01526
- Carlson HK, Lui LM, Price MN, Kazakov AE, Carr AV, Kuehl JV, Owens TK, Nielsen T, Arkin AP, Deutschbauer AM. 2020. Selective carbon sources influence the end products of microbial nitrate respiration. ISME J 14:2034–2045. https://doi.org/10.1038/s41396-020-0666-7
- Raes EJ, Karsh K, Kessler AJ, Cook PLM, Holmes BH, van de Kamp J, Bodrossy L, Bissett A. 2020. Can we use functional genetics to predict the fate of nitrogen in estuaries? Front Microbiol 11:1261. https://doi.org/10. 3389/fmicb.2020.01261
- Putz M, Schleusner P, Rütting T, Hallin S. 2018. Relative abundance of denitrifying and DNRA bacteria and their activity determine nitrogen retention or loss in agricultural soil. Soil Biol Biochem 123:97–104. https:/ /doi.org/10.1016/j.soilbio.2018.05.006
- Mania D, Heylen K, van Spanning RJM, Frostegård A. 2014. The nitrateammonifying and *nosZ*-carrying bacterium *Bacillus vireti* is a potent source and sink for nitric and nitrous oxide under high nitrate conditions. Environ Microbiol 16:3196–3210. https://doi.org/10.1111/ 1462-2920.12478
- Sanford RA, Wagner DD, Wu Q, Chee-Sanford JC, Thomas SH, Cruz-García C, Rodríguez G, Massol-Deyá A, Krishnani KK, Ritalahti KM, Nissen S, Konstantinidis KT, Löffler FE. 2012. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc Natl Acad Sci U S A 109:19709–19714. https://doi.org/10.1073/pnas.1211238109
- Hallin S, Philippot L, Löffler FE, Sanford RA, Jones CM. 2018. Genomics and ecology of novel N₂O-reducing microorganisms. Trends in Microbiology 26:43–55. https://doi.org/10.1016/j.tim.2017.07.003
- Luckmann M, Mania D, Kern M, Bakken LR, Frostegård Å, Simon J. 2014. Production and consumption of nitrous oxide in nitrate-ammonifying *Wolinella succinogenes* cells. Microbiology 160:1749–1759. https://doi. org/10.1099/mic.0.079293-0
- Tiedje JM. 1988. Ecology of denitrification and dissimilatory nitrate reduction to ammonium, p 179–244. In Zehnder AJB (ed), Biology of anaerobic microorganisms. John Wiley and Sons, New York, NY.

- Yoshinari T, Hynes R, Knowles R. 1977. Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil. Soil Biol Biochem 9:177–183. https://doi.org/10.1016/ 0038-0717(77)90072-4
- Hein S, Witt S, Simon J. 2017. Clade II nitrous oxide respiration of Wolinella succinogenes depends on the NosG, -C1, -C2, -H electron transport module, NosB and a Rieske/cytochrome bc complex. Environ Microbiol 19:4913–4925. https://doi.org/10.1111/1462-2920.13935
- Mania D, Heylen K, van Spanning RJM, Frostegård Å. 2016. Regulation of nitrogen metabolism in the nitrate-ammonifying soil bacterium *Bacillus vireti* and evidence for its ability to grow using N₂O as electron acceptor. Environ Microbiol 18:2937–2950. https://doi.org/10.1111/1462-2920. 13124
- Yoon S, Nissen S, Park D, Sanford RA, Löffler FE. 2016. Nitrous oxide reduction kinetics distinguish bacteria harboring clade I NosZ from those harboring clade II NosZ. Appl Environ Microbiol 82:3793–3800. https://doi.org/10.1128/AEM.00409-16
- Bertagnolli AD, Konstantinidis KT, Stewart FJ. 2020. Non-denitrifier nitrous oxide reductases dominate marine biomes. Environ Microbiol Rep 12:681–692. https://doi.org/10.1111/1758-2229.12879
- Sun Y, De Vos P, Heylen K. 2016. Nitrous oxide emission by the nondenitrifying, nitrate ammonifier *Bacillus licheniformis*. BMC Genomics 17:68. https://doi.org/10.1186/s12864-016-2382-2
- Stremińska MA, Felgate H, Rowley G, Richardson DJ, Baggs EM. 2012. Nitrous oxide production in soil isolates of nitrate-ammonifying bacteria. Environ Microbiol Rep 4:66–71. https://doi.org/10.1111/j.1758-2229.2011.00302.x
- Rowley G, Hensen D, Felgate H, Arkenberg A, Appia-Ayme C, Prior K, Harrington C, Field SJ, Butt JN, Baggs E, Richardson DJ. 2012. Resolving the contributions of the membrane-bound and periplasmic nitrate reductase systems to nitric oxide and nitrous oxide production in *Salmonella enterica* serovar Typhimurium. Biochem J 441:755–762. https: //doi.org/10.1042/BJ20110971
- Einsle O, Messerschmidt A, Huber R, Kroneck PMH, Neese F. 2002. Mechanism of the six-electron reduction of nitrite to ammonia by cytochrome c nitrite reductase. J Am Chem Soc 124:11737–11745. https: //doi.org/10.1021/ja0206487
- Wang H, Gunsalus RP. 2000. The *nrfA* and *nirB* nitrite reductase operons in *Escherichia coli* are expressed differently in response to nitrate than to nitrite. J Bacteriol 182:5813–5822. https://doi.org/10.1128/JB.182.20. 5813-5822.2000
- Kern M, Simon J. 2016. Three transcription regulators of the Nss family mediate the adaptive response induced by nitrate, nitric oxide or nitrous oxide in *Wolinella succinogenes*. Environ Microbiol 18:2899–2912. https:// doi.org/10.1111/1462-2920.13060
- Kim H, Park D, Yoon S. 2017. pH control enables simultaneous enhancement of nitrogen retention and N₂O reduction in *Shewanella loihica* strain PV-4. Front Microbiol 8:1820. https://doi.org/10.3389/fmicb. 2017.01820
- Darwin A, Hussain H, Griffiths L, Grove J, Sambongi Y, Busby S, Cole J. 1993. Regulation and sequence of the structural gene for cytochrome C₅₅₂ from *Escherichia coli*: not a hexahaem but a 50 kDa tetrahaem nitrite reductase. Mol Microbiol 9:1255–1265. https://doi.org/10.1111/j. 1365-2958.1993.tb01255.x
- Rock JD, Thomson MJ, Read RC, Moir JWB. 2007. Regulation of denitrification genes in *Neisseria meningitidis* by nitric oxide and the repressor NsrR. J Bacteriol 189:1138–1144. https://doi.org/10.1128/JB. 01368-06
- Vollack KU, Zumft WG. 2001. Nitric oxide signaling and transcriptional control of denitrification genes in *Pseudomonas stutzeri*. J Bacteriol 183:2516–2526. https://doi.org/10.1128/JB.183.8.2516-2526.2001
- Bergaust L, van Spanning RJM, Frostegård Å, Bakken LR. 2012. Expression of nitrous oxide reductase in *Paracoccus denitrificans* is

regulated by oxygen and nitric oxide through FnrP and NNR. Microbiology 158:826–834. https://doi.org/10.1099/mic.0.054148-0

- Hassan J, Bergaust LL, Molstad L, de Vries S, Bakken LR. 2016. Homeostatic control of nitric oxide (NO) at nanomolar concentrations in denitrifying bacteria – modelling and experimental determination of NO reductase kinetics *in vivo* in *Paracoccus denitrificans*. Environ Microbiol 18:2964–2978. https://doi.org/10.1111/1462-2920.13129
- Spiro S. 2012. Nitrous oxide production and consumption: regulation of gene expression by gas-sensitive transcription factors. Philos Trans R Soc Lond B Biol Sci 367:1213–1225. https://doi.org/10.1098/rstb.2011.0309
- Kern M, Simon J. 2009. Electron transport chains and bioenergetics of respiratory nitrogen metabolism in *Wolinella succinogenes* and other Epsilonproteobacteria. Biochim Biophys Acta 1787:646–656. https://doi. org/10.1016/j.bbabio.2008.12.010
- Sullivan MJ, Gates AJ, Appia-Ayme C, Rowley G, Richardson DJ. 2013. Copper control of bacterial nitrous oxide emission and its impact on vitamin B₁₂-dependent metabolism. Proc Natl Acad Sci U S A 110:19926–19931. https://doi.org/10.1073/pnas.1314529110
- Jensen K, Revsbech NP, Nielsen LP. 1993. Microscale distribution of nitrification activity in sediment determined with a shielded microsensor for nitrate. Appl Environ Microbiol 59:3287–3296. https://doi.org/10. 1128/aem.59.10.3287-3296.1993
- Bollmann A, Conrad R. 1998. Influence of O₂ availability on NO and N₂O release by nitrification and denitrification in soils. Glob Change Biol 4:387–396. https://doi.org/10.1046/j.1365-2486.1998.00161.x
- Brune A, Frenzel P, Cypionka H. 2000. Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710. https://doi.org/10.1111/j.1574-6976.2000.tb00567.x
- Lee A, Winther M, Priemé A, Blunier T, Christensen S. 2017. Hot spots of N₂O emission move with the seasonally mobile oxic-anoxic interface in drained organic soils. Soil Biol Biochem 115:178–186. https://doi.org/10. 1016/j.soilbio.2017.08.025
- Heylen K, Keltjens J. 2012. Redundancy and modularity in membraneassociated dissimilatory nitrate reduction in *Bacillus*. Front Microbiol 3:371. https://doi.org/10.3389/fmicb.2012.00371
- Jiao S, Xu Y, Zhang J, Hao X, Lu Y, Shade A. 2019. Core microbiota in agricultural soils and their potential associations with nutrient cycling. mSystems 4:e00313-18. https://doi.org/10.1128/mSystems.00313-18
- 57. Simonin M, Dasilva C, Terzi V, Ngonkeu ELM, Diouf D, Kane A, Béna G, Moulin L. 2020. Influence of plant genotype and soil on the wheat rhizosphere microbiome: evidences for a core microbiome across eight African and European soils. FEMS Microbiol Ecol 96:fiaa067. https://doi. org/10.1093/femsec/fiaa067
- Myers CR, Nealson KH. 1990. Respiration-linked proton translocation coupled to anaerobic reduction of manganese (IV) and iron (III) in *Shewanella putrefaciens* MR-1. J Bacteriol 172:6232–6238. https://doi. org/10.1128/jb.172.11.6232-6238.1990
- WolinEA, WolinMJ, Wolfe RS. 1963. Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886. https://doi.org/10.1016/S0021-9258(18)67912-8
- Sander R. 2015. Compilation of Henry's law constants (version 4.0) for water as solvent. Atmos Chem Phys 15:4399–4981. https://doi.org/10. 5194/acp-15-4399-2015
- Miranda KM, Espey MG, Wink DA. 2001. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71. https://doi.org/10.1006/niox.2000.0319
- Baethgen WE, Alley MM. 1989. A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant Kjeldahl digests. Commun Soil Sci Plant Anal 20:961–969. https://doi.org/10.1080/ 00103628909368129
- Molstad L, Dörsch P, Bakken LR. 2007. Robotized incubation system for monitoring gases (O₂, NO, N₂O N₂) in denitrifying cultures. J Microbiol Methods 71:202–211. https://doi.org/10.1016/j.mimet.2007.08.011